воскресенье, 30 октября 2011 г. 0 коммент.

Полимеры

Полимеры (греч. πολύ- — много; μέρος — часть) — неорганические и органические, аморфные и кристаллические вещества, состоящие из «мономерных звеньев», соединённых в длинные макромолекулы химическими или координационными связями. Полимер — это высокомолекулярное соединение: количество мономерных звеньев в полимере (степень полимеризации) должно быть достаточно велико. Во многих случаях количество звеньев может считаться достаточным, чтобы отнести молекулу к полимерам, если при добавлении очередного мономерного звена молекулярные свойства не изменяются. Как правило, полимеры — вещества с молекулярной массой от нескольких тысяч до нескольких миллионов.

Если связь между макромолекулами осуществляется с помощью слабых сил Ван-Дер-Ваальса, они называются термопласты, если с помощью химических связей — реактопласты. К линейным полимерам относится, например, целлюлоза, к разветвленным, например, амилопектин, есть полимеры со сложными пространственными трёхмерными структурами.

В строении полимера можно выделить мономерное звено — повторяющийся структурный фрагмент, включающий несколько атомов. Полимеры состоят из большого числа повторяющихся группировок (звеньев) одинакового строения, например поливинилхлорид (—СН2—CHCl—)n, каучук натуральный и др. Высокомолекулярные соединения, молекулы которых содержат несколько типов повторяющихся группировок, называют сополимерами или гетерополимерами.

Полимер образуется из мономеров в результате реакций полимеризации или поликонденсации. К полимерам относятся многочисленные природные соединения: белки, нуклеиновые кислоты, полисахариды, каучук и другие органические вещества. В большинстве случаев понятие относят к органическим соединениям, однако существует и множество неорганических полимеров. Большое число полимеров получают синтетическим путём на основе простейших соединений элементов природного происхождения путём реакций полимеризации, поликонденсации и химических превращений. Названия полимеров образуются из названия мономера с приставкой поли-: полиэтилен, полипропилен, поливинилацетат и т. п.

0 коммент.

Внутренняя энергия

Вну́тренняя эне́ргия тела (обозначается как E или U) — это сумма энергий молекулярных взаимодействий и тепловых движений молекулы. Внутренняя энергия является однозначной функцией состояния системы. Это означает, что всякий раз, когда система оказывается в данном состоянии, её внутренняя энергия принимает присущее этому состоянию значение, независимо от предыстории системы. Следовательно, изменение внутренней энергии при переходе из одного состояния в другое будет всегда равно разности между ее значениями в конечном и начальном состояниях, независимо от пути, по которому совершался переход.

0 коммент.

Освоение космоса: первые шаги

Еще с древних времен человечество мечтало заглянуть в космос, увидеть, что кроется в космических глубинах вне Земли. Из множества догадок и домыслов, которые сопровождали нас практически всю нашу историю лишь в XIX-XX веках писатели-фантансты завели речь о реальной возможности освоения космоса человеком.

Мастером, который впервые начал разрабатывать межпланетные перелеты является Константин Эдуардович Циолковский. Именно он еще в 1903 году впервые опубликовал свой труд, который назывался: «Исследование мировых пространств реактивными приборами». В этом труде была обоснована теоретическая возможность совершения межпланетных полетов с применением ракет.
0 коммент.

Сила упругости

Си́ла упру́гости — сила, возникающая при деформации тела и противодействующая этой деформации.

В случае упругих деформаций является потенциальной. Сила упругости имеет электромагнитную природу, являясь макроскопическим проявлением межмолекулярного взаимодействия. Сила упругости направлена противоположно смещению, перпендикулярно поверхности.

Вектор силы противоположен направлению деформации тела (смещению его молекул).

0 коммент.

Динамика (физика)

Дина́мика (греч. δύναμις — сила) — раздел механики, в котором изучаются причины возникновения механического движения. Динамика оперирует такими понятиями, как масса, сила, импульс, энергия.

Также динамикой нередко называют, применительно к другим областям физики (например, к теории поля), ту часть рассматриваемой теории, которая более или менее прямо аналогична динамике в механике, противопоставляясь обычно кинематике (к кинематике в таких теориях обычно относят, например, соотношения, получающиеся из преобразований величин при смене системы отсчета).

Иногда слово динамика применяется в физике и не в описанном смысле, а в более общелитературном: для обозначения просто процессов, развивающихся во времени, зависимости от времени каких-то величин, не обязательно имея в виду конкретный механизм или причину этой зависимости.


Динамика, базирующаяся на законах Ньютона, называется классической динамикой. Классическая динамика описывает движения объектов со скоростями от долей миллиметров в секунду до километров в секунду.

Однако эти методы перестают быть справедливыми для движения объектов очень малых размеров (элементарные частицы) и при движениях со скоростями, близкими к скорости света. Такие движения подчиняются другим законам.

С помощью законов динамики изучается также движение сплошной среды, т. е. упруго и пластически деформируемых тел, жидкостей и газов.

В результате применения методов динамики к изучению движения конкретных объектов возник ряд специальных дисциплин: небесная механика, баллистика, динамика корабля, самолёта и т. п.

Источник
0 коммент.

Рекорды свободного падения

В бытовом смысле под свободным падением обычно подразумевают движение в атмосфере Земли, когда на тело не действуют никакие сдерживающие или ускоряющие факторы, кроме силы тяжести и сопротивления воздуха.
0 коммент.

Свободное падение

Свобо́дное падéние — равноускоренное движение, под действием силы тяжести, при отсутствии сопротивления воздуха. На поверхности Земли, на уровне моря ускорение свободного падения составляет примерно 9,81 м/с².

В частности парашютист, в течение нескольких первых секунд прыжка, находится практически в свободном падении.

Свободное падение возможно на поверхность любого тела, обладающего достаточной массой (планеты и их спутники, звезды, и т. п.).

На объекте, находящемся в состоянии свободного падения, все физические процессы протекают так же, как и в состоянии невесомости. Это используется, например, при тренировке космонавтов: самолёт с космонавтами набирает большую высоту и пикирует, в течение нескольких минут находясь в состоянии свободного падения, при этом космонавты и экипаж испытывают состояние невесомости.
Демонстрация явления свободного падения

0 коммент.

Траектория, путь, перемещение

Траектория

Перемещаясь из одной точки в другую, тело описывает некоторую линию, которую называют траекторией движения тела.

Например, видимую траекторию – светящийся след – оставляет на ночном небе падающий метеор. Если известен вид и положение траектории в пространстве, то движение точки будет вполне известно, коль скоро будем иметь возможность определить для всякого момента положение точки на траектории; а для этого необходимо:
выбрать на траектории какую-либо постоянную точку so, от которой считать расстояние по кривой;
условиться, в каком из двух направлений по кривой расстояния считать положительными;
знать, какой функцией времени t выражается расстояние s движущейся точки от SO.


0 коммент.

История кинематики

Долгое время понятия о кинематике были основаны на работах Аристотеля, в которых утверждалось, что скорость падения пропорциональна весу тела, а движение в отсутствие сил невозможно. Только в конце XVI века этим вопросом подробно занялся Галилео Галилей. Изучая свободное падение (знаменитые опыты на Пизанской башне) и инерцию тел, он доказал неправильность идей Аристотеля. Итоги своей работы по данной теме он изложил в книге «Беседы и математические доказательства, касающиеся двух новых отраслей науки, относящихся к механике и местному движению».

0 коммент.

Кинематика

Кинема́тика (греч. κινειν — двигаться) в физике — раздел механики, изучающий математическое описание (средствами геометрии, алгебры, математического анализа…) движения идеализированных тел (материальная точка, абсолютно твердое тело, идеальная жидкость), без рассмотрения причин движения (массы, сил и т. д.). Исходные понятия кинематики — пространство и время. Например, если тело движется по окружности, то кинематика предсказывает необходимость существования центростремительного ускорения без уточнения того, какую природу имеет сила, его порождающая. Причинами возникновения механического движения занимается другой раздел механики — динамика.

понедельник, 10 октября 2011 г. 0 коммент.

Классификация кристаллов

Кристаллографией (в несколько ограниченном смысле слова) называется наука, описывающая геометрические свойства кристаллов и их классификацию на основе понятия симметрии. Изучение кристаллической структуры лежит в основе физики твердого тела. Основная сумма данных кристаллографии была накоплена уже к концу 19 в.
Образцы природных минералов, например берилла, алмаза или каменной соли, имеют плоские грани и прямые ребра, определяющие их типичный внешний вид. Такие вещества принято называть кристаллами, хотя еще до конца средних веков этот термин применялся исключительно к кварцу. Первые минералоги интересовались прежде всего именно формой кристаллов, т.е. их морфологией. Н. Стенон, датский лекарь при дворе великого герцога Тосканы и исследователь в области геологии, в 1669 открыл закон постоянства углов между гранями.
0 коммент.

Транзисторы

Возможно, наибольшее влияние на развитие современной физики твердого тела оказали открытия американских физиков, сделанные в 1949: транзистора с точечными (Дж .Бардин, У. Браттейн) и плоскостными (У. Шокли) переходами. Эти открытия были сделаны в ходе исследования электрических свойств особого класса твердых тел, называемых полупроводниками.
Транзистор был первым полупроводниковым устройством, способным выполнять такие функции вакуумного триода (состоящего из анода, катода и сетки), как усиление и модуляция. Транзистор обладал несомненными преимуществами перед электронной лампой, поскольку не нуждался в токе накаливания катода, имел значительно меньшие размеры и массу, а также больший срок службы. Поэтому транзисторы вскоре вытеснили электронные лампы и произвели революцию в электронной промышленности. Второй этап этой революции соответствовал переходу от отдельных транзисторов к интегральным микросхемам. Такая микросхема содержит на поверхности монокристалла кремния (чипа) площадью 1 мм2 многие тысячи схемных компонентов. Электротехнику на микроскопическом и атомном уровне обычно называют микроэлектроникой. За свои фундаментальные исследования в области полупроводников и открытие транзисторного эффекта в веществах типа германия и кремния Шокли, Бардин и Браттейн были удостоены Нобелевской премии в 1956.

Источник
0 коммент.

Эффект Джозефсона

Другое направление развития в области сверхпроводимости было инициировано работой английского физика Б. Джозефсона, который в 1962 предсказал возможность удивительных эффектов, связанных с прохождением (квантовомеханическим туннелированием) куперовских электронных пар от одного сверхпроводника к другому сквозь тонкий слой изолирующего вещества. Эксперименты вскоре подтвердили его предсказания. Одним из интересных свойств такого перехода (называемого джозефсоновским) является то, что ток куперовских пар через него возможен даже в отсутствие разности потенциалов между сверхпроводниками. (Согласно классическим представлениям, электрический ток возникает лишь между точками с разными значениями потенциала.)
0 коммент.

Сверхпроводимость

Известно, что при низких температурах у многих металлов и сплавов необычайно повышается способность проводить электричество. (Электрический ток представляет собой упорядоченное движение электронов.) В 1956 американский физик Л. Купер пришел к выводу, что при определенных условиях электроны проводимости в металле могут образовывать слабо связанные пары. Именно эти куперовские пары лежат в основе знаменитой теории сверхпроводимости Бардина – Купера – Шриффера (БКШ), построенной в 1957; в 1972 эти три американских физика были удостоены Нобелевской премии. В сверхпроводящем состоянии вещество не оказывает сопротивления электрическому току. Поэтому сверхпроводящие вещества представляют большой интерес для энергетиков, которые рассчитывают с их помощью, например, передавать электрический ток на значительные расстояния без тепловых и иных потерь. Однако выше определенной (так называемой критической) температуры сверхпроводимость исчезает, и у металла вновь появляется электрическое сопротивление.
0 коммент.

Свойства твёрдых тел

К физическим свойствам твердых тел относятся механические, тепловые, электрические, магнитные и оптические свойства. Их изучают, наблюдая, как ведет себя образец при изменении температуры, давления или объема, в условиях механических напряжений, электрических и магнитных полей, температурных градиентов, а также под воздействием различных излучений – света, рентгеновских лучей, пучков электронов, нейтронов и т.п. Значительная часть лабораторного оборудования, необходимая для изучения этих свойств, сама состоит из твердотельных устройств. Химические свойства твердых тел особенно существенны при изучении поверхностных явлений.
0 коммент.

Мудрость вакуума

Основой устройства материального мира является реальная среда, названная автором физическим вакуумом. Слово «физический» введено намеренно, чтобы отмежеваться от тривиального понятия вакуума как пустого пространства. Основная масса свойств проявляется физическим вакуумом вблизи экстремальных условий. Вдали же от экстремальных условий вакуум действительно похож на пустое пространство. Экстремальные условия проявляются в той или иной степени тогда, когда параметры, характеризующие то или иное возмущение вакуума (как среды), приближаются к размерам «фундаментальной длины», то есть к размерам в районе 10 -20 см, либо когда скорости движения объектов приближаются к скорости света.

Среда, названная физическим вакуумом, распространена всюду, на всех уровнях пространства и реально присутствует как при рассмотрении явлений микромира, так и явлений привычного нам макромира, а также в космических масштабах — в межзвездном и межгалактическом пространстве и внутри звездных образований.

Кроме обладания многочисленными свойствами физический вакуум может находиться в различных особых состояниях в зависимости от степени или вида (то есть, от особого качества) энергетического воздействия. Таких состояний имеется четыре явных и пятое отмечается автором как гипотеза. Коротко раскроем основные характеристики этих состояний.
Вакуум может находиться в наинизшем энергетическом состоянии, которое ассоциируется с известным понятием нулевого вакуума.
При воздействии на физический вакуум какого-либо стационарного, не изменяющегося поля (или магнитного, или электрического, или гравитационного) возникает возбужденное состояние вакуума.
0 коммент.

Вакуум — «многогранная», но неполяризуемая среда

В «Физике Микромира» (Маленькая Энциклопедия, 1980. Гл. ред. Д. В. Ширков) на стр. 315 говорится о поляризации вакуума как о специфическом релятивистском квантовом явлении, заключающемся в рождении виртуальных пар заряженных частиц-античастиц из вакуума под влиянием электромагнитного поля, а также в рождении и поглощении виртуальных частиц, сопровождающих движение физической частицы. Но реально виртуальные частицы в экспериментах не обнаруживаются и их возможное существование якобы доказывается лишь опосредовано, с помощью теоретических, математических построений (тоже виртуально-воображаемых).
0 коммент.

Физика

Физика — область естествознания, наука, изучающая наиболее общие и фундаментальные закономерности, определяющие структуру и эволюцию материального мира. Законы физики лежат в основе всего естествознания.

Термин «физика» впервые появился в сочинениях одного из величайших мыслителей древности — Аристотеля, жившего в IV веке до нашей эры. Первоначально термины «физика» и «философия» были синонимичны, поскольку обе дисциплины пытаются объяснить законы функционирования Вселенной. Однако в результате научной революции XVI века физика выделилась в отдельное научное направление.

 
;